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Abstract

An explicit, analytical model is presented of finite amplitude waves in

shallow water. The waves in question have two independent spatial periods, in

two independent horizontal directions. Both short-crested and long-crested

waves are available from the model. Every wave pattern is an exact solution

of the Kadomtsev-Petviashvili equation, and is based on a Riemann theta

function of genus 2. These bi-periodic waves are direct generalizations of -

the well-known (simply periodic) cnoidal waves. Just as cnoidal waves are

often used as one-dimensional models of'"typical" nonlinear, periodic waves in

shallow water, these bi-periodic waves may be considered to represent

"typical" nonlinear, periodic waves in shallow water without the assumption of

one-dimensional ity.
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1. Introduction

In their 1895 paper, Korteweg and deVries showed that in the absence of

• 'dissipation, the evolution of unidirectional, long water waves of moderate

amplitude is governed approximately by an equation equivalent to

ft + 6ffx+fxxx-O . (1.1)

This has become the standard form for the Korteweg-deVries (KdV) equation.

They also discovered periodic solutions of (1.1) in the form

f(x,t) - o2k2 cn2 [o(x - ct + Xo); kx Q +o , (1.2)

which they called "cnoidal waves". In (1.2), cn[*; k) is a Jacobian elliptic

function with modulus k (0 < k < 1), the wave speed (c) is given by

c- 6 1- 4 0 (1 - 2k 2 ) , (1.3a)

and the wavelength (L) is given by

L- 2K(k) ,(13b)

where K(k) is the complete elliptic integral of the first kind (cf. Byrd &

Friedman, 1971). Because (1.1) is invariant under a Galilean transformation

• (t - T, x - x - 6 ar, f(x, t) - v(x,r) + a), we may normalize its periodic

solutions by requiring

fdx - 0 .(1.4)f dx 0°
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Then in (1.2),

2 Ek k21]::

o -2) -1 ] (1.5) .-

where E(k) is the complete elliptic Integral of the second kind.

Two views of onoidal waves are popular. Mathematicians tend to regard

the KdV equation as a prototype of an infinite dimensional Hamiltonian system

that is completely Integrable. (For the analysis of (1.1) with periodic

boundary conditions, see Zabusky & Kruskal (1965), Novikov (19741,

Dubrovin & Novlkov (1974), Dubrovin (1975), Lax (1975), Its & Matveev (1975),

Flaschka (1975), McKean & van Moerbeke (1975), McKean & Trubowitz (1976).) Of

particular importance is an infinite dimensional family of exact,

spatially-periodic solutions of (1.1), all of which have the form

f(x't) -23X In e( 1, ... ,$#N) 1(1.6) : .

where # " ujx + wjt + *jo, and e is a Riemann theta function of genus N. One

may think of these "genus N" solutions of (1.1) as the periodic analogues of

its N-soliton solutions, which can be obtained from (1.6) In an appropriate

limit. In the simplest case, where N - 1, the solution in (1.6) is identical

with that In (1.2).

Ocean engineers often adopt a different viewpoint that was popularized by

Wiegel (1960). From this perspective, cnoidal waves are important not as
particular solutions of a partial differential equation, but rather as

one-dimensional, analytical models of "typical" nonlinear, periodic waves in

shallow water. (In this paper, we use "shallow-water wave" In the following
sense. Given a gravity wave with amplitude Co and wavelength L, propagating

In water of depth h, Its Ursell number is

U - o L
2/h3  (1.7a)
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We call the wave a shallow-water wave If

UmO () ; (1.Tb)

see Sarpkaya &Isaacson (1981, p.215) for a detailed discussion of (1.7b). The

well-known Stokes expansion of water waves requires U << 1, and becomes

invalid in the shallow water regime of interest here.)

The practical value of this second perspective is undeniable. Jacobian

elliptic functions are well-documented analytic functions, so it is fairly

easy to calculate "typical" values of wave speeds, forces, mass transport,

etc. for engineering purposes. Cnoldal wave theory assumes that wave

amplitudes are not too large, but the theory has been generalized by

Laitone (1961) and others to include higher order nonlinear effects. Sarpkaya

& Isaacson (1981) summarize these generalizations, and give a concise

description of cnoidal wave theory as a practical engineering tool.

One of the major shortcomings of cnoidal wave theory as a practical model

of shallow-water waves is that the theory is one-dimensional, whereas the

water surface is two-dimensional. It follows that cnoidal waves are

necessarily long-crested, whereas both long-crested and short-crested waves

are observed in shallow water.

The objective of this paper is to describe a two-dimensional

generalization of cnoidal waves. The waves to be described are periodic in

two independent directions on the water surface, and they are proposed here as

models of two-dimensional, periodic waves of finite amplitude in shallow

water. (There is always a semantic confusion about counting dimensions in

these problems. Cnoidal waves have two-dimensional velocity fields and

one-dimensional surface patterns; In this paper, we call cnoidal waves -.-

one-dimensional. The waves of interest here have three-dimensional velocity
fields, and two-dimensional surface patterns; we call them two-dimensional.)

To give the reader some notion of what this model actually is and in what
.- sense it generalizes the cnoidal wave, we now list some of its main features. -'.

This list should be interpreted as a series of claims, which will be verified

3
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.- In the body of the paper.

a) Just as the KdV equation describes the evolution of long water waves of

finite amplitude if they are strictly one-dimensional, the KP equation,

"f' + 6f +x + 3 f 0 (1.8) "'
S(t oxxxx yy

describes their evolution if they are weakly two-dimensional (Kadomtsev &

Petviashvili, 1970). The evolution described by (1.8) is weakly

nonlinear, weakly dispersive, weakly two-dimensional, and all three

effects are permitted to enter at the same order.

b) Both the KdV and KP equations are Galilean Invariant, so their periodic

solutions may be normalized by imposing a condition like (1.4).

c) Like the KdV equation, the KP equation admits an infinite-dimensional

family of exact solutions in the form

f(xyt) - 2  In e (1.9)

where e is a Riemann theta function of genus N. If N- 1, these

solutions are simply cnoidal waves.

d) The waves of interest in this paper appear at N- 2. Then the KP

equation admits solutions in the form (1.9) that are periodic in two

independent horizontal directions. Examples of these two-dimensional

waveforms are shown in Figures 2 and 3. In this paper, we will refer to

these waves as "bi-periodic," or as "KP solutions of genus 2." (To avoid

confusion we emphasize that our bi-periodic waves have two real periods.

They should not be confused with ordinary elliptic functions, which have

two complex periods but only one real period.)

e) The cnoidal wave in (1.2) is stationary if one travels with the speed

defined by (1.3). The KP solutions of genus 2 that are of Interest here

also are stationary if one travels with the correct (constant) velocity.

In both cases, there is only one wave pattern for all time. For cnoidal

waves the surface pattern is one-dimensional; for bi-periodic waves it

is two-dimensional.

f) The cnoidal waves In (1.2) have three arbitrary parameters (k,o,xo). of

14
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which two (k.o) have dynamical significance. These two parameters can be

determined uniquely from two appropriate measurements of the wave. The

bi-periodic waves have eight arbitrary parameters, of which six have

dynamical significance. We will show how these six parameters can be
determined directly from a few measurements of the wave.

g) The derivations that lead to both the KdV and KP equations assume that

the waves in question are too small to break. Neither equation ever

predicts breaking waves, but either equation may predict waves of large

amplitude that may break according to some other criterion.

The organization of this paper is as follows. In § 2 is a brief

derivation of the KP equation from the equations for inviscid water waves. KP

solutions of genus 1 (cnoidal waves) are reviewed in 13. The KP solutions of
genus 2 are the main concern of this paper, and these are described in detail

in §4. How to use these solutions as models of bi-periodic waves In shallow

water is described in 95.

..
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2. Physical meaning of the KP equation

The KP equation is a two-dimensional generalization of the KdV equation,

and its derivation as an approximate model for water waves follows closely

that of the KdV equation. Because the derivation has been given elsewhere

(e.g., Ablowitz & Segur, 1979), we merely review the main points here.

In the simplest case, we seek the irrotational motion of an inviscid, .

incompressible, homogeneous fluid, subject to a constant (vertical)

gravitational force, g. We employ Cartesian coordinates (X,n,E) in which E

increases upward. The fluid rests on a horizontal, impermeable bed at 5 = -h

and has a free surface at C " (X,n,r). Because the motion is irrotational by

assumption, there is a velocity potential 0 that satisfies

V2 0 - 0, -h < 5 < (x,n, ) (2.1)

It is subject to boundary conditions on the bottom (5 - -h),

a4=0 , (2.2a)

and along the free surface (5 (

D. ; + 0XX + n = 0 (2.2b)

+ g 1 12, (2.2c)
2

In this discussion, we are interested in spatially periodic solutions of

(2.1), (2.2), and we require

Lim dx (X Xo , n,T) 0 , (2.3)
L .

This is a normalization of r, corresponding to (1.4). It implies that h is the

mean fluid depth, and that = 0 in the absence of any motion.

p>

676
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Let K - (m) be a representative horizontal wave number for the waves in

question, with K2 - + m2. Orient the horizontal coordinates so that the

X-direction is the principal direction of wave propagation. To derive the KP

equations from (t.1) and (2.2). we make four assumptions.

(A) Wave amplitudes are small:

£ Rimax 1
C << 1".

h

(B) The water is shallow relative to typical horizontal wavelengths:

2(,nh) << 1

(C) The waves are nearly one-dimensional:

(m/)2 << 1

(D) These three small effects all have comparable influence:

(mI) 2 
* O[(Kh)2] O(£)

When these assumptions are used to re-scale the original equations

systematically, the result at leading order is a one-dimensional wave

equation. It follows that the surface displacement is given by

C(X~i, - ch [f (X -h~'nt + F(X + v/j- r;n,i)] + * ch

where f and F are known in terms of initial data, and each varies slowly in

its last two variables. The expansion procedure can be implemented in terms of

the following scaled, dimensionless variables,

X 2 - (gh) 1 2 'r/h, x l (gh)1"21 4/h, (2./4a)

7
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y -cht -C
3/2 (gh) "2 r/6h

Then we look for solutions of (2.1), (2.2) of the form

4 2ih[fxy~t) +F(-xDYit)] (2.4b)

etc. Secular terms arise at second-order in this expansion unless the

"right-going" waves satisfy the KP equation,

and the "left-going" waves satisfy an equivalent equation. To make the model

*quite explicit, we also write the KP equation for the right-going waves in its

* dimensional form for C(X,n,T):

*[(gh) 1 /2 ;T + + h2  XJ 0 (2.5)

-The components of fluid velocity in the (X,ri,F) directions are, for

*-h S S

* ~1/2 (.a
u-(g/h) C 2.a

v -(g/h)1/f dX(a34) ,(2.6b)

*w -- (g/h)1 1/2 (h + .) (2.6c)

-Note that only the vertical component of velocity (w) has any vertical

structure at leading order. To the same order of approximation, the fluid

ppressure below the free surface is simply hydrostatic:

p -pg(4 ~ (2.6d)

8
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Some Comments about this derivation of the KP equation:

(i) Surface tension was omitted for simplicity. The effect of including it

is to change the numerical coefficient of r, in (2.5). For water

beneath air, this change is negligible if the water depth exceeds a few

centimeters. If the water depth is less than about 1/2 cm, however,

this coefficient changes sign and this changes the qualitative

character of the solution of the KP equation. We recommend caution

when using the model described here for periodic waves on thin films of

liquid.

(ii) This derivation neglects dissipation, which is assumed to be even

weaker than the weak nonlinearity, weak dispersion and weak

two-dimensionality included in the KP equation.

(iii) The assumption that the motion is irrotational is convenient but not

necessary, as shown by Benney (1966).

(iv) The original equations (2.1, 2.2) are invariant under a horizonta±L

rotation of coordinates. This symmetry is broken in choosing the

x-direction as the principal direction of wave propagation. Even so,

the KP equation retains a remnant of this symetry; (1.8) is invariant

under transformations of the form:

x x +ay - 3a 2 t, 3x axe

y y-6et, a y y *a x . (2.7)

t t' at 3 t 6 6y -3u23x

We will refer to these transformations loosely as "rotations," but we

emphasize that this symmetry group only approximates actual rotations

in the physical (x,n) plane, and only If l x > lail,.

Thus, the KP equation admits waves that travel in arbitrary directions

in the (xy) plane, but we can expect them to model water waves

9
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• .

accurately only if they propagate primarily in the x-direction.

(v) The KP equation also exhibits a scaling symmetry.

x Ox, t 03t, y 2 f + 0-2f (2.8)

This symmetry is inherited from the arbitrariness of the small

parameter (c) in (2.4). The symmetry parameters, (cB), are two of the

six parameters available in the model of doubly periodic waves in

shallow water.

(vi) We mentioned below (2.3) that (2.3) defines h uniquely. Because of

(2.6a), (2.3) also identifies the laboratory coordinate system (i.e.,

X,n,,T). Integrating (2.3) over/_ dt shows that the mean horizontal

motion vanishes In the x-direction, so there is no net mass transport

in that direction in the laboratory frame.

10
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3. KP solutions of genus 1 - cnoldal waves

Cnoidal waves have been discussed at length elsewhere. (For a

hydrodynamic emphasis, see Wiegel, 1960 or Sarpkaya & Isaccson, 1981; for a

mathematical emphasis, see Dubrovin, 1981 or Boyd, 1982.) We review them here

because the bi-perlodic waves are direct generalizations of cnoidal waves.

3.1 Construction of KP solutions of genus 1

Real-valued KP solutions of genus 1 are constructed as follows. The

phase variable is

*i x +vy t ,0 (3.la)
or

* - U (x + py - ct) +0 ; (3.1b)

f is required to be real. A theta function of genus 1 is defined by a Fourier

series:

e (4;b) = exp ( b n2  in ) (3.2)

n.-@ :
n--rn!

. is both convergent and real-valued for all real if b is a negative real

number, which we now require. (Differences in notation are always a nuisance.

e (C) and b are called 413 (/2) and (2wii), respectively, by Whittaker and

Watson, 1927.) Krichever (1976) showed that the KP equation (1.8) has ,..

%°--. 11 .



solutions of the form

2f (x,y.t) - 2ax in e (#;b) , (3.3)

provided c is a particular function of (u, p, b). Standard identities for

elliptic functions (Cf. Byrd and Friedman, 1971) show that (3.3) Is

equivalent to

2 E) k kI)1f 2 k2n (3.4a)

where

. (, (34b)/.
b -2wK( 1 - k 21/2)/K (k) 3.4c)

If p- 0 in (3.1), then (3.4) Is identical with (1.2) and (1.5), the

formulae for a cnoidal wave solution of the KdV equation. Its speed is given

by (1.3a) with a - pK(k)/w. For p 0 0, we may use (2.7) with a - p to rotate

this KdV solution Into the general real-valued KP solution of genus 1, with

the following properties.

1) There are four arbitrary real parameters in the solution: (p, p, to) in

(3.1), and b (b < 0) in (3.2). Of these, p represents the scaling

symmetry in (2.8), p represents the rotational symmetry in (2.7), and

*o represents the translational symmetry of any of the independent

variables in (1.8). There is no dynamical significance to to.

ii) Given these parameters, k is uniquely determined by (3.4c), the waveform

is given by (3.3) or (3.4a), and the speed parameter is given by

c - 2  (-K(k) ) [ k)- 2 + k2 (3.5)

An equivalent expression for the speed in terms of (U, p, b) was given

by Dubrovin (1981).

iii) The wavelength, direction of propagation and total speed all follow from

(3.1) and elementary geometric considerations. A typical cnoidal wave

is shown in Figure 1.

12
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Instead of (3.2), we may also write

0 (*; b) 2 exp [ -m,)] (3.6)
M b-b°-

This representation follows from an identity known as the "Poisson sum

formula,"

~exp (n2s *2niz) u( )12exp [z -mt )Y/s] , (3.7)

which is valid for Re(s) K 0 (Whittaker & Watson, 1927, p. 476). For any

b < 0, it follows from (3.6) that the two terms corresponding to m - 0 and

m - +1 are larger than any others in the neighborhood of * - t. If b * 0, then

in this region these two terms are even dominant in an asymptotic sense.

[Similarly, the terms corresponding to M and (M + 1) dominate in the %

neighborhood of t - (2M+1)t. Thus each pair of terms in (3.6) dominates over

exactly one period of 0 (0).) Retaining only the terms corresponding to m - 0,

1 in (3.6) and substituting into (3.3) yields the expression for single KP

soliton riding on a depressed mean level (at 2P2/b):

f(x,y,t)- 2ax ln + exp-_ (, - it) + 2p 2 /b

(L- 2  sech2 (- ] + (3.8)

This is correct asymptotically if b * o with (p/b) finite. It follows that the

cnoidal wave can be viewed as a superposition of overlapping solitary waves, -

placed one period apart. This view has been discussed at length by Boyd

(1982).

13



3.2 Reconstructing a cnoidal wave from simple measurements

In order to use the KP solutions of genus 1 as models of periodic waves

in shallow water, one must be able to infer the parameters (u, p. b) from

measurements of the wave. This can be done in a variety of ways, one of which

is outlined here.

The cnoidal waves have a simple characterization.

i) A cnoidal wave is real-valued and bounded, for all real (x, y, t).

ii) It is one-dimensional; i.e., there is a single phase variable

f, in (3.1)], which is linear In (x, y, t). There is no variation

along the wave crests (i.e., along * - const). In the terminology of

oceanography, enoidal waves are long-crested.

iii) A cnoidal wave is periodic (in *).

iv) There is a uniformly translating coordinate system in which the cnoidal

wave is stationary.

Cnoidal waves are the only KP solutions with these four properties.

Given a shallow-water wave with these four properties, one can determine

the parameters of the corresponding cnoidal wave in three steps, as follows.

a) Depending on the problem, one may or may not be able to orient the

X axis in the direction of wave propagation. If so, then p - 0 in

(3.1) and in (3.5). If not, then p measures the angle between these

two directions; one can expect discrepancies between the cnoidal wave

model and the water wave if p is large. In any case, p can be measured

directly from the wave pattern.

b) Once p is known, U is determined from p and L, the wavelength in the

direction of wave propagation:

r - 2'[ ( 1 -1/2 (3.9)

c) Given M and p, b can be determined from the wave amplitude or from the

speed, either of which can be measured directly. Here we focus on the

speed. Suppose p, p and c have been determined by direct measurement.

From (3.5), define

14
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c~ ~ 3E (k)) 2[-3 E)\2  - 2-k (3.10)2w j K(k)3

One can prove that T is a monotonic function of k, and also of b.

Therefore, b Is determined from V. Simple approximations are obtained

by expanding (3.4Ic) and (3.10) for k *1 and for k *0. The results are

as follows. As b *- (k *0),

I 214eb (3.11a)

As b *0 (k *1).

For -*< b < 0,

-1 *2A4eb < y (2.f (2 1 3b) (3-11c)

Moreover, one may approximate V by (3.11a) for b < -14.6, and by (3.10b)

for b > - 4.6. with an error that never exceeds 1%. This is adequate

for comparisons with most experimental data.

15



4. KP solutions of genus 2

The KP solutions of primary Interest in this paper have genus 2. They are

two-dimensional generalizations of cnoidal waves. Aspects of these solutions

have been considered by Krichever (1976). Nakamura (1979). Krichever and

Novikov (1980), and Dubrovin (1981). Related work by Hirota and Ito (1981),

Bryant (1982), and Finkel and Segur (1984) is also of Interest. The work of

Dubrovin (1981) is particularly Important from our perspective.

4.1 Construction of theta functions of genus 2

The construction of real-valued,nonvanishing theta functions of genus 2

requires a certain amount of machinery, which we now Introduce. The first

Ingredient is a two-component vector of phase variables, 4- (1 2)T, where

Iij x *v + t * oj0 , i - 1,2 . (4.1a)

-ij (x + pjy - cjt) jo j - 1,2 o (4.1b)

Both components are required to be real. To change these variables Into those

of Dubrovin, let pj iUj. vj * iVj, wj --4iWj, i m 1,2

The second ingredient is a real-valued Riemann matrix: a 2x2, symmetric

matrix that Is real-valued and negative definite. Let

a( b1  b12
(J4.2a)

b12  b22

be real-valued. is negative definite if

< 0, b22 < 0, b1  b22 - b2 > 0 (4.2b)

16
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A theta function of genus 2 is defined by a double Fourier series:

E (#1, 2, = exp { m * * * I m , (4.3)
m1=-M m2 a-4D:.

where P

• m • - b l + 2 m, 2 b 22

m m01 mI 2  222

Clearly e is real-valued. It converges uniformly in *I, *2 because of

(4.2b). It is periodic in I when *2 is held fixed, and vice-versa (i.e., It

is quasi-periodic). We show in § 4.3 that 0 does not vanish.

This description needs further refinement for two reasons. First, two

different Riemann matrices can be equivalent, in the sense that they generate

the same theta function. For example, let

S \bA bA2  ~ '$b b.1 2

bAb2 d /(~l b( A+1)2 d

If b and d are both negative and A is real, then and 12 are both Riemann

matrices. Let

mI
4D

m - (m1 , m2 ), n - + m2), m2  .

One shows by direct computation that

P

17
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* Then it follows (by renumbering in (4.3)) that 11 and §2 produce the same

theta function, and are equivalent. Any two equivalent Riemann matrices can

be related to each other by a symplectic transformation (see Dubrovin, 1981,

" for details).

To eliminate this ambiguity, Finkel and Segur (1984) Introduce the idea

of a basic Riemann matrix.

Definition: A real-valued, 2x2 Riemann matrix is said to be basic if

: 1 1 '

<--< 2 1,2 , (4.4)

where A b b1 They also prove the following results:

i) Every real-valued, 2x2 Riemann matrix is equivalent to a basic Riemann

matrix.

ii) Two basic Riemann matrices are equivalent only if their A's coincide.

It follows that every real theta function of genus 2 can be generated from a

basic Riemann matrix. Henceforth, we consider only basic Riemann matrices,

since any other real Riemann matrix can be reduced to its basic form via an

*-: algorithm given by Finkel & Segur (1984).

Basic Riemann matrices have a natural representation as follows. Define

b max (b 1 1 , b 2 2 )

A b12/b:

d -det /b (4.5)

18
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Then every basic Riemann matrix takes one of two forms

2S

.(b bA (2A*db
.or ). (.4.6a)

bA bA 2 +d \bA b

with

b 0. 1 F d S b (1-A)• (.4.6b)

The relation between these two forms is

(#1 #21 l1) -e(2' 1; f 2 ) (4. .6c)

For definiteness, we will always use 01unless otherwise noted.

The second difficulty with (4.3) is that It admits degenerate cases. A

Wx Rlemann matrix is called decomposable It is is equivalent to a diagonal

matrix, and indecomposable otherwise. For example, in (.4.2) is decomposable

If b12 -0. In this case 0 in (14.3) becomes a product of two theta functions

of genus 1. Dubrovin (1981) shows that theta functions Of genus 2 generate

nontrivial KP solutions if and only If they are indecompsable. He also gives

an explicit test for decomposability, which requires the evaluation of a 4x4

determinant. A simpler test Is given by the following Theorem (Finkel and

Segur, 19814): Let o sbe a basic seemann matrix, as in (4.6). Then is

decomposable if and only if A -0. e..

Summary:

Let (b, d, A) be three real parameters satisfying (4.6b), with A ' 0.

These parameters generate a basic Remann matrix in the form (4.6a). Every

real, x2, indecomposable Riemann matrix is equivalent to a basic Riemani

matrix. Basic Riereann matrices with A , 0 generate real-valued, indecomposable
.. ,- .....--. -

theta parantns Thenee a britte. in the form.
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GO024 exp jd 4~l exp jb(m, ' M2) cos ln* 10202).

which follows from (4.3) and (4.6a).

rA

06.
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41.2 Construction of KP solutions of genus 2

Given an indecoinposable theta function of genus 2, KP solutions are

constructed in the usual way:

f(xy~t) 2 2 in B. (4.8)

Dubrovin (1981) proves that f(x,y,t) actually satisfies the KP equation,

provided that Its parameters satisfy certain relations. To express these

relations, we need two more concepts: theta-constants, and two more phase

variables.

Let p be a two component vector, which can take on one of four values:

p,~- o: 1,2) 01/

0P2  0o) \o 1/2)' 1/2)(.9

Every Riemann matrix generates a four-component theta constant of the form

Mi 2  (4.10a)

where A (my 2), and the product is defined below (13). If (Is in basic

form (for definiteness, in (.6a)) then this can be written as

0 P'] L expld (m2  P2 p21E explb (i 1  p1  A (m* P2 ))2 V
m 2  ml (410lb)

rObviously, e is differentiable with respect to (b, d and A), and each of

these derivatives is a 1-component vector indexed by eo. Define

01 *2 ,A1  03 01 2 , (4..11a)

21

o, .,. -. ,.,0, i- . .



where

Imi.--~,m. (4.11b)
b2 2  bA2 + d

We show In § 4.3 that the wave crests lie on *3 - const and on *14 - const. The

corresponding wave numbers are

3 i p1 V U4  2 -A ip (11.11c)
U
I" ,

with similar definitions for (v3 , w3, v4, w11).!

Now we may state the main Theorem (Dubrovin, 1981): Let 3 be a real,

indecomposable Rlemann matrix; i.e., satisfying (11.6) with A 0 0. Then a

function of the form (11.8) solves the KP equation (1.8) If and only If its

parameters are related by the four equations, Indexed by P, In (11.12).

where

w 3v2 41

I01 Wj4 *I1 1 w 6 V4 V1 w 6v, 4U3 4
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b P 2~J b a b ad 01 1 ad(j 2b ~j ~ )
and D is a constant of integration with no physical significance. is

invertible if and only if is Indecomposable, so (4.12) always can be solved

for .

After i is inverted in (4.12), the first and third of the resulting

equations can be written as

2 24''
2 i 4 , (4.13a)

22V4 • i 3 Q 4  4; 4 (4.13b)

Here Pl(z;4) and P4(z;4) are well-defined polynomials of degree 14. Then

eliminating (D, i 1 , w4 ) from (4.12) yields one more relation,

- 24 P01 P6 , 6 (4.13c)

where P(z;6) Is a well-defined polynomial of degree 6. The resulting solution

will be real-valued if P4/Pl Is chosen so that

To summarize, (4.8) provides a real-valued solution of the KP equation,

(1.8), whenever: (i) i is indecomposable (i.e., A 0 0 in (4.6)); and (ii)

* (4.13) is satisfied. There are no other constraints.
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The conditions in (4.13) can be interpreted In terms of the wave pattern

as follows:

(1) According to (4.11c),

M 2 2 1l )2. - vl)2 " (i 3 V2 -1.22 v3 ) . (4.14)

(I If 11 v2 2 vl , then at any fixed t, *1 - constant and 2- constant

on parallel lines In the (xy)-plane. Using (2.7), such a solution can be

Orotated" so that v1 -2a 0; i.e., these are actually KdV solutions of

genus 2. According to (4.13c) and (4.14), P,1v2 - p2, wherever

P (4/M1;6) - 0. In this way, every indecomposable 2x2 Riemann matrix

generates exactly 6 KdV solutions of genus 2, corresponding to the 6 roots of

P (4/1;6) C 0. The solutions may or may not be real. This Identification

is due to Dubrovin (1981). Our interest in the present paper is in

two-dimensional waves, so we will systematically neglect these one-dimensional

KdV solutions.

(III) Suppose P0~2 0 P.2 vl. Then

ff d,1  ^ d*2 . ( i,2 - 1 2 v)ffdx ^ dy (4.15)

represents a non-zero area-element in the (x,y)- plane. For any fixed

(- 1. 72 ). a period parallelogram of e ( #1, 02;1) has as its vertices four

points defined by

(,,. *2 ) - (2r, ) ( *, * 2,, *2 ) , ( i 2ir, *2-2ir ) , ( _,, _j2,

The area, A, of this parallelogram is given by

J / do , d*2 - (W1,v2  '2v )f/dA,

24
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so that

2 (2")4. ((.16)
P1"J/2*J A2

It follows that (4.13c) can be Interpreted as specifying the area of the

period parallelogram of each KP solution. As one might guess, this area is

independent of rotations (2.7), but depends on scaling (2.8).

(iv) If one seeks a "nonlinear dispersion relation" for these waves of

genus 2, it is given by (4.13a,b). These two relations are the generalization

to genus 2 of (3.10). Y, and T4 are independent of either of the symmetries in

(2.7) or (2.8). They depend only on and on (p4/lI). They determine the wave

speeds.

(v) Suppose illv2 0 12vl. Then at any t, $1 " constant and $2 - constant

intersect transversely at a unique point (x(t), y(t)). As t changes, this

point moves in the (x,y)-plane with a constant speed given by

dx 1 V0 2 - v20 1  (4.17a)
dt Pl2 - P2vl

P201 - (4.17b)
dt 111'"2 - P21 .

where the parameters are determined by (4J.13). In fact, every point in the

wave pattern moves with this same speed. The entire wave pattern is stationary

in a coordinate system that translates uniformly with a velocity given by

(4.17). Every KP solution of genus 2 with i #v2 0 P2v 1 is stationary in a

coordinate system appropriate to that wave, just as every cnoidal wave is

stationary in an appropriately translating, one-dimensional coordinate system.

25-'°
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For completeness, we now summarize a different description of these KP

solutions of genus 2, in terms of the underlying algebraic geometry. More

details are given by Dubrovin (1981). Every indecomposable 2x2 Riemann matrix

(real or not) corresponds to a compact Riemann surface of genus 2. This

complex surface is a hyperelliptic curve, defined by an equation of the form

w2 . P (Z; 5) or w2 . P (Z; 6), (14.18)

where P (Z; n) is a polynomial of degree n. The surface is topologically

equivalent to a sphere with two handles. Given such a surface, there Is a

well-defined procedure to generate a Riemann matrix on the Riemann surface.
Moreover, given a surface and a fixed reference point on it, there is a

mapping (the Abel mapping) from each point on the Riemann surface to a point

on a complex 2-torus, called the Jacobi variety. This torus is coordinatized

by two independent complex variables. For example, if we allowed 41 and 02 in

(4.1) to take on complex values, they would coordinatize the torus. Each of

these complex variables has two complex periods, and at most one real period.

The inverse problem may be stated as follows. Given a Riemann matrix, §,
did it come from a Riemann surface? If so, from which one? For genus 2, the

solution as follows: § corresponds to a Riemann surface of genus 2 if and

only if § is indecomposable. Here is how to construct the curve (4.18) -

. explicitly, if § is indecomposable. Construct a theta function as in (4.3),

• and use (2.8) to scale I- 1. Then (4.13c) has the form (4.18), and defines

the hyperelliptic curve. Points on the Riemann surface are identified by the

complex variable (i 14 /01 ). This surface has 6 branch points (called

Weierstrass points), defined by P (Z; 6) - 0. These 6 points represent the

6 KdV solutions discussed above.

Every KP solution of genus 2 has eight free parameters: (b,dA) in

(4.6), and (j 1, ,2' v1' .10 020) in (1..1). Then (v 2 9 1 , w2) in (1.1) are

determined by (4.13). Of the eight parameters, *10 and 02 0 affect neither the

; dynamics nor the algebraic geometry. Of the remaining six, we may always

26
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choose

IAJ- and Vi O

*by using (2.7) and (2.8). Thus each KP solution of genus 2 has just four
* parameters that cannot be changed by a Lie point-symmetry of (1.8). Those are -

*(bd,A), which determine the underlying Riemann surface, and OA1d which

determines the fixed reference point on that surface.
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4.3 A politon representation

By using twice the Poisson sum formula (3.7), one easily shows the

equivalence of the following three representations:

2)
(.01 902;~'- m2

Lexp{. b 12 Ap )2  + I M * I 2  *(

exp b i 2  -2 nA) 4" 0 )

Sexp $- •(i1 (n2 - An 1 ). + i) , (4.19b)

21

where all sums are taken over (--,-). It is numerically efficient to use
(14.7) if both b and dare large (and negative), to use ((.19a) if d is large

with b sm.all, and to use ('4.19b) if both b and d are small. (The other .-

possibility, b large with d small, is excluded by (il.6).) Note from (4.19b) ::

* that if (b, d, A, *1, *2) are all real, then 6 is the sum of positive term.s.

*Therefore e never vanishes, and the associated KP solution is real and

bounded. The corresponding formulae for the '-com.ponent vector of theta

constants are:

28
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mI  
-.-

p.

0 4P] exp d (m2 P 2.)2"
m2pbD 1  Am+ 2 )2

exp d (b2P2 14.10)

ID 4) -b m*1 2 -_. exp d (mn2  P2 )2 *

-- .°.

+ 2 exp L~-2 -)2 cos 2wn, p A(m2 +P
n-i \"i(4.20a)

-4

if 1rn1)21
(b )4P - / exp ~b -27rin 1p,

E exp d 2lin2P2} (4.20b)
n2 d

We now propose a soliton interpretation of the KP solutions of genus 2.

a) These solutions can be viewed as a doubly periodic array of

* interacting solitons. This description becomes exact in the limit b~o, d~o.

b) Away from the regions of interaction, the crests of the individual

solitons lie along *3-const and *4-const, as defined in (4.11). (Within a

*region of interaction, of course, individual solitons cannot even be def ined

*' unambiguously.) Thus the edges of the period parallelogram lie along *1-const.

and *2 aconst., but the wave crests ordinarily do not. According to (4.11),

therefore, A and 1 determine the angles of rotation of the wave crests from

" the directions of periodicity. This is a direct geometric-dynamical

interpretation of the off-diagonal term in the Riemann matrix: it determines

how strongly the waves of the two families (03 and 04) affect each other.

29



c) A given wave crest experiences a phase shift from each of its
Interactions with waves of the other family. The strength of the phase shift

is proportional by A (or X).

The soliton interpretation can be proved in the limit b*O, d.O, so we

consider that case first. Note that (4.19b) can be written as

expt(rnZT -_ (lni ))2I (4.21)

In the limit of bO, d.O and in a neighborhood of (t 2 =  ) the four

terms in (4.21) corresponding to (nI- -1, 0), (n2- -1, 0) dominate. Retaining

only those terms in (4.21) yields

0exp (/ 2 1 2 2 ! 2 1A 1\ 2\
(bd)l/2 I 1b d 2 2 d 2 2

x- 2  2 -!

expt( *. )(.2 d.. (2.) ~/$~( 2J.(.2

b d d°
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Substituting this into (14.3) yields the approximate KP solution

f( x.Y~t) 2a 2 In1 exp n1 + exp + i~ n+ + )

1_ 2 (P2 111 e(4.23)A)

b d(1.3

* where

d dr(. - T 14-

113 -21~ 4) (d IF + 2ki 02/d -- 2v(2 b ) (d - IF)

A d

and we have used (4~.6) and (11.11). The parameters in (4.23) are constrained by

(4.13), which in this limit becomes

23 3 3 2 '3L (14.214)

2p (21r~J 2

(2w1 4 (~ (bA2  d) 2 2

exp47 dJ bd2 P)

-d 2~1I4\ (2r P(bA 2 + d))\)

[ -d 2~ +d4] ( - P3)
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Note that the wave speeds remain finite In this limit only if (I4 /d) remains

finite as d+O, and if (pl/b) remains finite as b+O. But (4.23) and (4.24)

represent an exact solution of (1.8)1 They describe two solitons, Interacting

obliquely on a depressed mean level (of. Satsuma (1976) or Ablowitz & Segur .-

1981, p. 189). Away from the region of interaction, the crests of the

individual solitons lie along *3 - constant and - constant. The phase

shift of the 4- soliton due to the interaction is obtained from (4.23) by

letting *3 *+ i' holding * 4 fixed. The result is

A 4 " , 3  2 (4.25)

The largest neighborhood of (#1 1 'l *2 w) in which the four terms in

" (4.22) dominate is precisely a period parallelogram centered at

41 " T, *2 - 1). Moreover, in the corresponding period parallelogram

centered at (#1 (2 N1  1) , *2 - (2N2 + 1) w), there are in (4.21) exactly

four dominant terms, indexed by (n1 + - - 1, 0), (n2 + N2  -1, 0). Thus

the entire series in (4.21) represents a bi-periodic repetition of a 2-soliton

solution of (1.8).

To summarize, we have now established the validity of the

soliton-interpretation given above in the limit b * 0, d + 0. Figure 2a shows

a two-soliton solution of (1.8). Figure 2b shows a genus 2 solution with

. (b -- I, bA2 + d -- 1). The sense in which the solution of genus 2

represents a bi-periodic extension of the two soliton solution is evident.

What happens if b and d are not small? Given any bd satisfying (4.6),

then in a period parallelogram centered at 1 ' *2 T :), the four terms In

(4.22) are bigger than any of the others in (4.21), but they are not

necessarily dominant in an asymptotic sense. Even so, there is a practical

sense in which the wave crests still lie along *3 - constant and

4- constant, provided this statement is interpreted correctly. This

assertion is corroborated in Figure 3, which shows some typical KP solutions

of genus 2 outside the soliton limit. Each wave pattern consists of a

bi-periodic array of peaks, connected to each other in two directions by

32
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ridges. The peaks are the Interaction regions, where the two wave amplitudes

"add". If those peaks were well separated as In Figure 2, the ridges would

become the wave crests of the individual solitons. In Figure 3 the peaks are

not well separated, and the "individual wave crests" are simply the lines of

steepest descent and ascent across the saddles. We have sketched lines of --

constant #3 and constant *4 In Figures 2c,3d,and 3g to show that they Identify

the wave crests (i.e., the lines of steepest ascent in the saddles) In the

general case.

Do the wave crests still lie along *3 " constant and 4 - constant, even

If b,d

(i) Suppose d * - -, with b, A finite. Then A * 0 from (4.11), so

#3 41" In this limit, therefore, the assertion is that the crests lie along

1 constant and #4 - constant. Its validity for d * - * follows easily from

(4.19a); It Is shown In Figure 1, which is actually a wave of genus 2 with

b -- 3, d -12, -0.3, I1 -IJ 2 - 0.5.

(11) Suppose b . - - and d 4 - -. Then the appropriate representation of

o is (1.7). We will show In §4.4 that the limit b*-o, d.- is

nondegenerate only If A * 0 as well. In this limit, therefore, A 0 0, A 0

and the wave crests lie along the directions of periodicity.

In summary, we assert that the wave crests always lie along *3 " constant

and 44 - constant. We have proved this assertion In certain limiting cases,

and have offered supporting evidence in other cases.

Now we turn to point (c) above. We have already shown that in the limit

b * 0, d - 0, the phase shifts In each period of the lines - constant and

04 constant are given by (11.25). In fact, the validity of (4.25) does not

rely on any special limits; it is a consequence of elementary geometry. In

Appendix A, we prove the following theorem. Let #1 and *2 be independent real

variables. For fixed A and 1 (0 S A 2 2  1/4). define and *4 by (4.11)

on 0 S < 2w, 0 5 02 < 2w, and by periodic extension outside this rectangle.

Then once each period, 03 - constant and 04 - constant experience

discontinuous shifts whose size and direction are given by (1.25).
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4.4 Limits and asymptotic formulae

The KP solutions of genus 2 generalize and unify several simple models of

waves in shallow waters, including one-dimensional enoidal waves, obliouelv

superposed infinitesimal waves (i.e., Fourier modes), and 2-soliton formulae.

We show next how these previously known results emerge from the KP solutions

of genus 2 In various limits. We also develop asymptotic formulae that will be

useful in S5.

(a) Limit of one weak wave: d * - "

If d i - in (4.7), then

e - exp {-b m i 1 m.

e d/2 exp I exp -b m A , I m A . li
m

0 (e 2 d ) (J4 .27)

where (M) denotes complex conjugate. Comparing this with (3.2) shows that at

leading order, (4.27) represents a one-dimensional enoidal wave with phase

variable #I. There is no phase shift of the cnoidal wave at this order because

the second wave is too weak. The next order describes a weak perturbation of

the cnoidal wave, with an amplitude 0 (ed/2) . This perturbation solves the

equation obtained by linearizing (1.8) about a cnoidal wave. We will refer to

these weak perturbations as "linear waves". An example of such a perturbed •

cnoidal wave is shown in Figure 3a.
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The limiting form of (4.12) depends on whether or not b remains finite as

d *--. Suppose b remains finite. Then for either P, " 0 or P, - 1/2 in

(4.10),

;[ol-F xp lb(E p1 ) 2

ed 1 exp bm *p 2 exp -b(m p, A).2]

.0 ( 41 d)

ed/14 2exp b(m p, 1/2) 

" exp b (m + p1 - /2 (e 2
LI2

When these limiting forms are substitute into (4.12), the two equations

with P2 - 0 become

in."

[1p] v2) [D ~ ~ P wP! . 3 8 b ;I I b 0, , o . (4.28)

whr [Pl E epj~+ •I 2i:

pm
These are exactly the equations one obtains for a cnoidal wave. If D is

eliminated from (4.28), the resulting equation is equivalent to (3.10). The

other two equations in (4.12), with P2 
= 1/2, determine the speed and

orientation of the linear perturbation.

(b) The small amplitude limit: d * - -, b * - - 0 (1)

In this limit, (4.7) becomes

- 1 2 exp - cos oi + 2expj (b A2  d)) os 2,-
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corresponding to an approximate KP solution of

f (x,y,t) - 2ij exp fk cos f+ 2 exp A ( 2  d COS co

(4.29)

where 41 and *2 are defined by (4.1). Clearly (4.29) represents a linear

superposition of two Fourier modes of small amplitude, and one expects (4.13)

to produce the dispersion relation of the linearized problem in this limit.

This expectation is correct. One shows that in this limit, (4.13) becomes

*I wl + 3 v, 2  P , (4.30a)

2 4
1P2 w2  3v 2  112  , (4.30b)

exp =b) 2 , (4.30c)
(l 2 ) *(P - P2

where we have used (4.1b). Because b + - - with UI ,2 finite, (4.30c) can be

satisfied only if A + 0 as well. Then one may prescribe two Fourier modes in

(4.29) arbitrarily, and (4.30c) determines (bA). Because A * 0, the wave

crests and the lines of periodicity coalesce in this limit.

For use in §5, we also give the next corrections to (4.30a,b). As

b0- , d.-, with (bA) finite,

- 3 p12  6("
1 2,- - 1 + 24 exp (b) - 12 exp (bA2  d ). M/I1

6 "-

'f c2 - p2  -1 24 exp(bA2 + - 12 exp (b)- M/02

U2 (4.31)
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where

M IJ1
2  12 2 [(Al 42 )2 exp(bL) 01 12) exp(-bX) -2 (uJ 2 *J '2

(c) Limit of one soliton plus perturbation: d * - , b * 0

Consider (4.19a) in the limit b * 0, d * - *, and in a neighborhood of

p 2 1 exp ;  
(4.32)

(e-x) 2" 1['

+ 2 exp 2 cos €4 + exp -(- cos ( 4 + 2wX))J

where and €4 are defined in (4.1), (4.11). The parameters of this solution

satisfy

(2r.L1 \ 2 r 1  \ (2rvl ) 2 02~ t ~ [ 3 (14.33a)
\-b) / -b /b i \-b .,2

24 4 3v2  4 0 (41.33b)

\ 2r1,2rvj
v4  -4--

-..

-b -b

2111j,~' 2 22-p

04 2 04 L_ cot (?r)- u 2  . (4.33c)

-b-.b--b

At leading order in exp (d/2) , (4.32) gives a one-dimensional soliton as

b * 0. Equation (4.33a) shows that the speed of this soliton remains finite as
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*b *0 only If M, 0 so that (p, /b) remains finite. At second order, (4.33b)

shows that the speed of the linear wave is unaffected by the presence of the

* soliton of leading order. The next order corrections to (4.33a~b) are

c, -3 p1 2v ( )2 [ b

+ 214 exp(d) [1i cos (2wXA) (1 - z)z + 2 sin (2irA)* ]
(4-*3)4)

c4 3P1
2  l

2 -- + 2)4 exp(d) 2

where Z-

(d) Limit of two solitons: b *0, d *0

This limit was already discussed in 9 4.3, and from quite a different

viewpoint by McKean (1979). The higher order corrections to the wave speeds

* are

- - 3 -~ 2 (~b 2 
4d)2 +12( 2 12)4 +

"13 (435)

2
4 3P14  (~ 2 ( d~) 2

Note that both T3and T4are singular in this limit, although the wave speeds

* are not.
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5. Using wave measurements to calibrate the model
I..

The KP solutions of genus 2 have eight free parameters: b, A, d In

(4.6), and P t12 2 v1 110, 1 20 in (4.1). In order to use these solutions as

models of two-dimensional periodic waves in shallow water, one must be able to

Infer these parameters from measurements of the water wave. The purpose of

this section is to show how to Infer these parameters from two different kinds

of wave measurements. At this time, we have not proven rigorously the

validity of every step of our algorithms, but we have identified the major

unproven points in five conjectures.

Certainly the KP solutions of genus 2 cannot describe all possible waves

in shallow water. Every two-dimensional KP solution of genus 2 that is

generated by a real Riemann matrix, as discussed In §14, necessarily has the

following four properties, so the water waves that they model should also have

these properties.

(I) The solution is real-valued and bounded, for all real (x, y, t).

(ii) It is spatially periodic in two independent directions, which we may

Identify with €1 and *2 in (4.1). If #1 and *2 are not collinear, then

11 v2 V P2vlv. We call a solution two-dimensional if V~l 2 0 P2vl.
* (iII) There is a uniformly translating coordinate system in which the entire

two-dimensional wave pattern is stationary.

(iv) The common features of two-dimensional KP solutions of genus 2 can be

inferred from the examples shown In Figures 2 and 3. Within each period

parallelogram, there Is a single wave peak. It occurs In a region of

interaction of two intersecting "wave crests". The crests connect adjacent

peaks, and may appear as ridges of constant wave amplitude, as in Figure 2, or

merely as lines of steepest descent and ascent between neighboring peaks, as

in Figure 3. Ordinarily, each wave crest experiences a phase shift in

crossing a region of interaction.
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CONJECTURE A: Out of all possible KP solutions, the only ones that are

(I) real-valued, (ii) genuinely two-dimensional, and (iIi) stationary in some

uniformly translating coordinate system are those in the form (1.9), with

genus 2.

The first step in comparing water wave data to KP solutions is to

transform the physical data into KP data in the form f(xty,t). This is

accomplished via (2.4), with F - 0 in (2.4b), once we have decided on:

(i) the magnitude of C; and (ii) the direction of the x-axis in the

horizontal plane. A reasonable definition of c is given below (2.3). A more

refined definition is unnecessary, because adjustments of e can be absorbed

into 0 in (2.8).

The direction of the x-axis should be approximately the principal

direction of wave propagation. Small readjustments of this direction can be

absorbed into a in (2.7), but one can expect significant errors If (2.5) is

used to model water waves propagating in a direction much different from the

x-direction. In the remainder of this section, we assume that these choices

already have been made, and that the water wave data already have been

transformed via (2.4) into KP data.

5.1 Wavelength and velocity data

As discussed in § 3, a cnoidal wave is determined to within a translation

by specifying its wavelength and speed of propagation. The KP solutions of

genus 2 that are of Interest here are two-dimensional generalizations of

cnoidal waves, so one expects that a similar procedure might succeed here as

* well.

Here is a precise statement of the mathematical problem. Let f(x,yt)

represent a particular two-dimensional KP solution of genus 2. Then f has the

form (4.8), and is specified completely by the eight free parameters in (4.1) '

and (4.6). Identify eight measurements of f(x,y,t) which are sufficient to

determine these parameters, and give an explicit algorithm to find the

parameters from the measurements.
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The practical problem differs from this in two respects.

(1) Instead of f(x,yt), a two-dimensional wave in shallow water is

observed. The wave pattern has the four properties listed above that are

common to all two-dimensional KP solutions of genus 2, and we use Conjecture A

to assert that the water wave can be represented by a two-dimensional KP

solution of genus 2.

(ii) We do not necessarily require that the eight free parameters be

determined from only eight measurements. In practice it is often convenient

to take one or two extra measurements and to minimize the effect of

measurement errors.

In any case, how does one find experimentally the free parameters of a

two-dimensional KP solution of genus 2? The method proposed here has eight

fundamental steps.

(1) Find a period parallelogram at a fixed time, t.

This step is based on a procedure due to Arnol'd (1978, p.276). Start

with any point, (x,y,t). (From here to step(5), t remains fixed at t, and we

shall suppress it.) Because f(x,y) is a two-dimensional, bi-periodic function,

there is an infinite array of points in the plane at which f is periodic to

f(xy); i.e., at which f and all of its derivatives match those at (x,y).

This collection of points is called a period lattice (relative to (x,y)).

Pick any point in this period lattice other than (xy). Denote the line

through these two points by #1 - const. Out of all points on this line that

are in the period lattice, denote one closest (but not equal) to (x,y) by

(xlyl).

Out of all points off of this line that are in the period lattice, denote

one closest to the line by (x2 ,y2 ). The two line segments connecting (x,y) to

(x1 ,Y1 ) and (x,y) to (x2 ,Y2 ), are two sides of a parallelogram with the

following properties.

(i) The parallelogram contains exactly four points of the period lattice.

These four points lie at its vertices. (For a proof, see Arnol'd, 1978).

(ii) The parallelogram is a period parallelogram of f; i.e., f(xy) may be
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defined in the entire plane by periodically extending the function defined on

the parallelogram.

(iii) The parallelogram cannot be replaced by any smaller parallelogram

without losing information about f(x,y).

(iv) The enclosed area of this parallelogram can be measured directly, and

It provides information about the parameters in question, through (4.16). The

method described here does not use this area explicitly, but it can be used as

a check on the results obtained.

Define ¢--x,y) as in (4.1), and choose (1, 1 ) so that: (i) *1 - 0 along

one side of *the period parallelogram; (ii) .1 - 2w along the opposite side.

Define ¢2 (x,y) In the same way using the other two sides of the parallelogram.

(2) Find the wave crests

Within each period parallelogram, f(x,y) has one complete region of

Interaction, containing the maximum of f(x,y). As demonstrated in § 1, each

region of interaction is connected in two directions (related to *3 and €1 in

(4.11)) by saddles; see especially Figures 3c,3d,3f,3g. We now define a

"wave crest" to be a straight line segment along a saddle connecting two

adjacent regions of interaction. These are wave crests In the sense that

along any other line that intersects one of these line segments transversely,

f(x,y) attains a local maximum at the wave crest. In this paper, "wave crest"

always refers to a saddle between two peaks, and not the peak itself.

Emanating from every region of interaction are two pairs of parallel wave

crests. We will eventually associate the pair possessing the larger wave

amplitudes at their saddles with *3. and the pair possessing the smaller wave

amplitudes with ¢4"

CONJECTURE B: The wave crests in each period parallelogram are defined by

3 const. and 4 const., where *3 and #4 are defined by (4.11).

(3) Find a basic period parallelogram
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The period parallelogram found in step (1) is not unique. Figure 5 shows

two dissimilar period parallelograms on the same period lattice, and enclosing

the same area. Denote the sides of the two parallelograms *1, *2 - conat,

and by *1' *2 " conat, respectively, as shown In Figure 5. the two sets of
41, .42

coordinates In Figure 5 are related -by

1 -2

(5.1)
as the reader may verify.

More generally, let (, *, *j)2 const denote the sides of any other
period parallelogram on this same period lattice, that encloses the same area

as that of (,1, ;2) These coordinates are related by

(5.2)

where is an integer, 2x2, unimodular matrix (i.e., integer elements and

determinant - ± 1). These are precisely the transformations used to reduce a -

" real Riemann matrix to its basic form, because the symplectic transformations
* among equivalent Riemann matrices correspond precisely to the transformations

among period parallelograms with the same enclosed area on a fixed period

I* lattice.

The two kinds of transformations relate to theta functions as follows. A
* real 2x2 Riemann matrix, plus a particular period parallelogram on a lattice,

determines a theta function, as in (4.3). Suppose the Riemann matrix is
transformed to an equivalent one by a symplectic transformation. To keep the
same theta function, one must also transform the period parallelogram by the
corresponding integer unimodular matrix, as in (5.2). Thus, for a given theta

function, each equivalent Riemann matrix corresponds to Its own period

parallelogram on a fixed period lattice. (Here and in what follows "period
parallelogram" refers to both the single four-sided figure and to the tiling

- of the entire plane by this figure.)
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Recall that a real, indecomposable, 2x2 Riemann matrix is equivalent to a

basic Riemann matrix, for which

-< 2 2  . (5.3)

Corresponding to the basic Riemann matrix is a particular period

parallelogram, which we also call basic. Here is how to identify it. Define

Ol(x,y) and *2(x,y) as in (4.1), so that *1(x,y)/2w takes on sequential

integer values on two parallel sides of the parallelogram, and *2 (x,y)/2.

takes on sequential integer values on the other two sides. The basic period

parallelogram is Identified by two properties.

(i) It is related to the parallelogram in step (1) by an Integer unimodular

transformation. In particular, it encloses the same area as the parallelogram

in step (1).

(ii) The wave crests are related to the lines of periodici.:, of the basic

" parallelogram by

*3 (x,y) . , (x,y) - A *2 (xy) , (5.4)

24 (x,y) - 2 (x,y) - A *1 (x,y)

where (A, A) satisfy (5.3) and

A A > 0 (5.5)

We show in Appendix B that the basic period parallelogram is uniquely

defined by these two properties. Here are some other properties, which follow "

from these and from the results in §4.

(III) If 01 is increased by 2n, holding *2 fixed, *3 changes by 2r.

Conversely, if i2 is increased by 2w, holding #, fixed, *3 changes by

C- 2w A).

(iv) The wave crests (f3) associated with the larger amplitude waves
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experience a smaller phase shift C2wA), while the smaller amplitude waves feel

a larger phase shift (2wA) as a result of their Interaction.

(v) Given a period parallelogram, the wave crests emanating from a vertex

are constrained by (5.3) to lie In certain two-dimensional cones.

(vi) If #3 lies to the left of #1, then #4 lies to the right of *2, because

of (5.5). The Interaction does not represent a common rotation of both wave

crests.

(4) Measure the wave numbers

At this point, we have Identified the basic period parallelogram, and

have located the two sets of wave crests within the parallelogram. Now we may

measure the wave numbers (P1,P 2 ,vi v2 ) directly. We also measure A directly.

(i) *3 " const on the wave crests with the larger amplitude waves, and with -

the smaller deviation from the nearest line of periodicity.

Cii) ~j " const on the two sides of the parallelogram most nearly aligned

with 3 conat.

Cii) The straight lines along these two sides are defined by .-

it x  Vl + 1 0 "O, jlx+v 1 y4 1 0 "2w (5.6)

so that (P1 v1 ) can be found by direct measurement.

(iv) From the other two sides of the parallelogram, one also finds (P 2 ,v 2 )

by direct measurement. The area of the parallelogram, of course, then

satisfies (4.16).

Cv) A can be obtained either by measuring an angle and using (5.4), or by 0

measuring the phase shift of the *4-crests and using (4.25).

(vi) One obtains A in a similar way. From (14.11b),

d/b A/A -A (5.7)

We use this Information simply as a check on (d/b), but it is not necessary to

do so..z
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(5) Measure the wave speeds

Because the wave pattern is a two-dimensional KP solution of genus 2, it

is stationary in a uniformly translating coordinate system. Measure this

speed of translation. Then (4.17) determines (w1,w2).

(6) Deduce the Riemann matrix

Given any basic Riemann matrix (b,d,A), and any real (IuJ1/Ml) satisfying

(4.13d), then (4.13ab) determine Yl,4. Suppose (Y1 ,Y4) were generated in

this way from some (btd,X,(V4/pl))-

CONJECTURE C: Given (A, (P4/Il), Y1,Y11), (4.13ab) can be inverted to find

(b,d) uniquely.

We have not proven this assertion, but we offer the following evidence in

support of it.

(1) The validity or the corresponding statement for genus 1 can be proven.

(ii) We have tested this conjecture numerically by first generating (YpY1 4)

from a particular Riemann matrix, then using (4.13a,b) in a simple Newton;type

root-finder to solve for (b,d), given (Y1 ,Y2 ,At,114/ 1). Our experience has

been that the algorithm always converges quickly to the correct values, even

If our starting values were chosen poorly.

Returning now to our two-dimensional KP solution of genus 2, In effect we

have already measured (y1,y1 ,A,(1 /il)). Then it follows from Conjecture C

that (b,d) are determined from (4.13a,b). Reasonably accurate starting values

can be obtained from (1.31), (4.34) and (4.35).

Conjecture C is closely related to another conjecture that we never use

explicitly, but which is implicit In this entire algorithm.

CONJECTURE D: Every bounded real-valued KP solution of the form (1.9) is

generated by a real-valued Riemann matrix.
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(7) Check Consistency

(I) The ratio (b/d) has been determined independently in steps (4) and (6).

These must agree.

(ii) Both sides of (4.13c) have been determined independently. These must

also agree.

(8) Measure the phase constants

If desired, *10, *20 in (4.1) can be measured for a particular coordinate

system. These have no dynamic significance. In any case, this completes the

algorithm.

5.2 Initial Data

A second way to specify these waves is with initial data: to specify the

elevation of the water surface everywhere at some fixed time (which we call

t - 0). Suppose f(xy,O) Is genuinely two-dimensional, is periodic in two

Independent horizontal directions, and is given completely in one period

parallelogram. We must answer two questions: (i) Is this the initial data

of a KP solution of genus 2? (11) If so, how does the wave evolve in time?

This method of solution was first given by Segur, Finkel & Philander (1983).

Is this the initial data of a two-dimensional KP solution of genus 2?

Conjecture A Is not effective for initial data, because we have no information

about the time evolution of the solution. Instead, we assume that f(x,y,O)

has the form (4.8) and derive necessary conditions that f must satisfy in

order to be Initial data of a two-dimensional KP solution of genus 2.

For any function satisfying (4.8) and (4.1),

ax - + 2y - e (5.8)

at  10 lal + 2a2 t

where aj = "'.-, j -1,2.
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Now integrate f(x,y,O, over a period parallelogram (with area A), using

14.16): :

S ll - P2 vi) // dA • f(x,y,O) - (5.9)

/2 d*1  /2i Pd2  (U~ 232 ) (a.'n e) 0

This requirement is closely related to the normalization in (2.3).

A second constraint on the initial data is obtained by multiplying (1.8)

by (axf), and integrating over a period parallelogram. Most of the integrated

terms vanish identically, and we are left with

/ . (aof(xyo)) .

Similarly, multiplying (1.8) by a f and integrating over a period
y

parallelogram yields

ffdA. a f y )2 (yf(xy.) 0. (5. 11)

It is clear that an infinite sequence of necessary constraints on the initial

data can be obtained in this way. It is also clear that no finite number of ..

them will be sufficient to guarantee that f(xy,O) is the initial data of a KP

solution of genus 2. Conditions which are both necessary and sufficient are

not known at this time.

Consider now the second question. Suppose f(x,y,O) is two-dimensional, is

periodic in two Independent directions, and is given on a period

parallelogram. Further, suppose that f(xy,O) Is known to be the initial data

of a KP solution of genus 2. Find f(xy,t).

Because f(xy,O) defines initial data for a two-dimensional KP solution

of genus 2, the initial wave pattern simply translates with some uniform

velocity for all time. Once this velocity is known, the initial data in a

period parallelogram plus the velocity of translation determine the solution

for all time. There is no need to find the underlying Riemann matrix in this
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case.

The velocity of translation can be found from (4.17) if ( wl,w 2 )in (4.1)

are known. One equation for (w 1 w2 ) can be found by multiplying (1.8) by f,

and multiplying over a period parallelogram. The result is

dA. fxft 6ff - f2. * Sf - O. (5.12)

It follows from (5.1) that

t folw (ro5(51)3ha

(U1" - U2") "t - ( ,,'2 - w2v) fx +(,,, - ,2 w,) , (5.13)

Moreover, ( 1 2 ,1, 2 )all can be measured directly from the given Initial

data, and 1 v2 '
O U2vl1  because the initial data is two-dimensional.

OL Substituting (5.13) into (5.12) yields

fA ( 2 fX - I,2fxfy) • JffdA (UPlfxfy- Vlf 2 ) (5.14)

ff - JdA (6f f2 f 2 3f2) 0 .l ,,2 112- o. +3

The integrals in (5.14) all can be evaluated at t- 0, so (5.14) is an

algebraic equation for (w , w2 )"

A second equation for (l -iw2 ) can be found easily if ( U2#'U1  is

rational, which we now assume. Because (U2/Ul) can be measured from the

initial data only to a finite accuracy, this assumption makes no practical

limitations. Its consequence is that f(xy,0) is necessarily strictly periodic

in x (holding y fixed). Denote this x-period by L. Because f(x,y,0) has the

form (4.8) by assumption, then for all (Xy)
JLdx f(x * xo , y, 0) - 0. (5.15)
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Define

U.- .; f0 L ds • sf (x xo + sy,O) (5.16)

is the unique anti-derivative of f with the same periodicity as f, and with

zero mean in x; i.e., j also satisfies (5.15) and f - ax The corresponding

anti-derivative of may be defined in a similar way.

Now multiply (1.8) by that anti-derivative of (i.e., the second

integral of f) with the same periodicity as and f and integrate over a

period parallelogram. The final result is

ff dA (vz2  12fdy) wi 4jfdA (, fjY- vjf 2) w2 (5.17)

4 ~f (av-iv)jdA (3f 3  f2. + ) 2 0.

The integrals may be evaluated at t 0 0, so (5.14) and (5.17) are two

linear algebraic equations for ( w1 ,w2) . If they are linearly independent,

their common solution defines ( ,w2 ) * and it completes the specification of

the given KP solution of genus 2..

CONJECTURE E: (5.14) and (5.17) are linearly independent, and they define

(0 1 , w2 ) uniquely@

It Is easy to show that (5.14) and (5.17) are linearly independent In the

small amplitude limit (d * - -, b 4 - i, but we have not established this

property In general. In the cases we have tested numerically, (5.14) and

(5.17) are independent, and their common solution agrees with that In (4.13).
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Appendix A

Theorem: Let #1 and *2 be independent real variables. For fixed A and A
(0 2 : A2 S 1/14), define *3 and 4*4 by (4.11) on 0 S < 2i, 0 : S2 < 2w,

and by periodic extension outside this rectangle. Then once each period

03 - const and #4- const experience discontinuous shifts, whose size and

direction are given by (4.25).

Proof: Figure 4 shows a period lattice in #1 and #2, with two line segments

of #4 const, shifted by Af4. We must show that A#4 is given by (4.25). Let

(x,y) denote Cartesian variables, and let *1 and *2 be related to (x,y) by

(4.1) at t 0 0. Let L denote the normal distance between *2 and (42 + 2w).

Then

-2(I2 * 2) -1/2L- 2w P22 + v2 . (A.1) .21i

Let L1 denote the distance along (*2 " const), between *1 and ( 1 + 21), as

shown in Figure 4. Their product gives the area of the period parallelogram:

I.i-v2 -A2,i ' (A.2)

where we have used (4.16). This determines i .

The unit normal vector for any of the phase lines

- const, j - 1,2,3,4 has components given by

-j ( + v ) 1/2' ( +v ) 1/2) (A.3)
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The angle (Y) between the two lines, *2 -const and -4 const, is given by

2 4 2 2 112 V 2  V 2 11
COS.1 n2 * f 1 1 2 . 2 ( P4 4 /

so

sn2 . 1- 2 - A2 ()'I v2 -~v . A24

(p2 
2 + v2

2 ) (4 2' +42
Now the normal distance (ALOj4 is one side of a right triangle whose hypotenuse

is 11 :

AL4 -1, sin Y -(2 2w ~2) 1/2

But the magnitude of the wave-vector, K4 is + V~ 12 so the distance

AL1 corresponds to a phase shift of

2ul (A.5)

This is the desired result. The other half of (41.25) is proved by similar

* means.
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Appendix B

Suppose the basic period parallelogram of a fixed wave system is

identified by *1 - const. and 2 - const. The wave crests are identified by

3 const. and- " const., where *3 and 04 are defined by (5.4), with A and
A satisfying (5.3) and (5.5). We want to show the basic period parallelogram

is the only period parallelogram in which the (fixed) wave crests are related

to the lines of periodicity through relations of the form (5.3)-(5.5).

Let *a - const. and *b " const. along the sides of another period

parallelogram. If the two parallelograms enclose the same area, then

a' *b are related to * , *2 by an integer, unimodular transformation of the

form

02 c d Ob

(B.1)

In this Appendix, let on + 1, with om and On independent. Let (ab,c,d) be

integers with

ad-bc=a 1 . (B.2)
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Substituting (B.1) Into (5.4) yields( 3 (a-Ac b-ld\ ( #a
I c-Aa d-Ab) x*

(B-3)

There are two choices:

ai a- c-a 2 , d-Ab- 3, b-Ad-A, a-Aa-A; or

(ii) c- la 02 , b-Ad- , d-Ab-A, a-Ac-A.

For either choice,

We will show that in either case one is forced back to the basic period

parallelogram.

Assume (i); the analysis for (ii) is similar, and we will not repeat it.

Because AA > 0,

c-a-o2  b-d-o B

A A

02 + A A
so that a- (B.6)
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in.

Now IA^1 S T, and 1 - AA 1- A2  .

It follows from these relations and (B.6) that

5 .'-,'. .:

1 S 02 a S . (B.7)

But a is an integer, so from (B.7) and (8.5),

a - 2, c O. (B.8)

Similarly, d - a3 , b - 0. Therefore, the transformation in (B.1) becomes

01i 102 0 4
0

#2 03  #b

(B.9) "

Any choice of (a 2 ,o 3 )leaves the basic period parallelogram intact. This

completes the proof of uniqueness of the basic period parallelogram.

5.
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FIGURE CAPTIONS

Figure 1 Cnoidal wave solution of KP. In (3.2), b - - 3.; In (3.1),

0.5, v - 0.215, w- 0.325.

Figure 2a. Two soliton solution o KP. In (4.23), n3 - 4y - 119t,

n- x - 4y - 49t, exp (A) - 16/15.

Figure 2b. Genus 2 solution of KP In soliton regime. In (4.6), b - - 1,

bX2 * d - - 1, A - 0.15; in (4.1) V1 V 2 - 0.25. v1 - - 0.1263, v2 - 0,

W1  - 0.9681, w2 - - 0.2695.

Figure 2c. Contour plot of wave shown in Figure 2b. This plot shows clearly

how each wave crest experiences a phase shift from every Interaction with

another wave.

Figure 3 • Genus 2 solutions of KP, showing some of the variety of wave forms

available.

Figure 3a. One wave is dominant. b -- 2, d -- 3. A -0.3. I1 " 12 n0-5,

V1 - - 0.3164, v2 - 0, w1 - - 1.227, w2 - 0.063.

Figure 3b. Both wave crests are evident. b - -2.5, d - - 3., A - 0.3,

.*V" 142 -0.5. v1 - - 0.2579, v2  0,1 - - 0.7360, w2 - 0.1313.

Figure 3c. A comparison of the waves here and In Figure 3b shows the effect

of the scaling symmetry in (2.8). Here b - - 2.5, d - - 3.. A - 0.3,

V1 112 0.8 1 - - 1.056, v2 - O, W1 - - 5.564, 0 2 - - 0.5519.

Figure 3d. Contour plot of the wave shown in Figure 3c. Here a basic period

parallelogram Is shown, along with the wave crests corresponding to *3(-- )
and W -)- Note that the wave crests do not lie along the directions of

periodicity.

58

.. 2 A2 .. _ .



I

Figure 3e. Contour plot of wave pattern in the small amplitude limit.

b - - 8, d - - 8, A - 0.1, 1 a 2 - 1, 1 - 1.808, v2 - 0, e1 - - 8.820, p
w 0.9837. In this limit (and only here) the wave crests align with the

directions of periodicity.

Figure 3f. "Typical" genus 2 solution of KP, away from any limiting case.

b - - 4, d - - 3.6, A - 0.5, 1 " 2 1, - - 0.7147, v2 - 0, wl - " 1.300,

12 = 0.0885.

Figure 3g. Contour plot of wave pattern in Figure 3f. The wave crests and

phase shifts are marked.

Figure 4. Period diagram of hypothetical wave pattern, showing lines of

periodicity (#1 and #2), wave crests and phase shift. The same effects in an

actual wave pattern are shown in Figure 3g. .

Figure 5 A fixed period lattice supports many period parallelograms that

enclose the same area. Two are shown here.
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